
Diffie-Hellman
Key Agreement Method

Summary
peter-thoemmes.org research

c© Peter Thoemmes
Weinbergstrasse 3a

D-54441 Ockfen, Germany

December 31, 2011

Abstract

This paper is a summary of the brilliant algorithm, based on the ideas of
a research project proposal CS244 of Ralph C. Merkle (Puzzles) from 1974
and the work of Whitfield Diffie and Martin E. Hellman. In 1976 the
Diffie-Hellmann Key Agreement Method was published and in June 1999 it
became RFC 2631. This paper is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY, without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Contents

1 General Stuff 2

2 DH: Using an Exponential Function 3

3 ECDH: Using an Elliptic Curve 6

4 Comparing DH and ECDH 18

5 DHE, ECDHE & PFS 19

6 The Man In The Middle Attack 20

1

1 General Stuff

In the 1970’s Whitfield Diffie, Martin E. Hellman and Hellman’s Student
Ralph C. Merkle together worked on public key cryptography. Starting from
an idea of Hellman’s Student Ralph C. Merkle, known as Merkle’s Puzzles (Fall,
1974), they developed the Diffie-Hellmann Key Agreement Method, published in
1976. Finally, in June 1999, the results were published in RFC 2631. Based on that
publication, Ron Rivest, Adi Shamir und Leonard Adleman published the RSA
algorithm in August 1977. RSA stands for the names Rivest, Shamir und Adleman.

Using this method makes it possible, that never the actual (secret) encryp-
tion/decryption key is transmitted over the insecure channel between two users
who want to exchange secret data. But still, after an initial ’handshake’, both users
know the secret key to use for encryption and decryption. To do so, both users do
have to create a private key before, which actually are random numbers. The server
defines the domain parameters and provides a public key calculated from his private
key using that parameters. The client, after receiving the domain parameters and
the server’s public key, calculates the secret key from his private key and the server’s
public key. Then the client calculates a public key from his private key using the
domain parameters and sends it back to the server. This enables the server to also
calculate the secret key.

Figure 1: Diffie-Hellmann Key Agreement Method

2

2 DH: Using an Exponential Function

Following equation plays a central role in the Diffie-Hellman Key Agreement Method:

y = gm mod n = (g mod n)m mod n

with g,m, n, y ∈ N+

This operation is discrete (g,m, n, y ∈ N+) and cyclic (mod n). It is used in a special
way: n is defined as a prime p and g must be smaller then p but bigger then 1 (as
otherwise any power of g would remain 1):

n := p

g ∈ [2, p− 1]

As p is a prime, it can never be a power of g, and so the modulo operation will result
in following range of natural numbers (RFC 2631 show how to generate a valid p
and a valid g):

(gm mod p) ∈ [2, p− 1]

Now following definitions are done:

Private key of user A (server, agent):

kpriv,A := a

Private key of user B (client):

kpriv,B := b

Actual secret encryption/decryption key for both, user A and user B:

k := gab mod p

That means that we have following situation:

User A (server, agent) defines: g, p and a

User B (client) defines: b

So nobody knows the actual encryption/decryption key at this moment, as it consists
of g, p and both private keys a and b.

3

The challenge now is how to make the encryption key known to both without sending
it and also without sending the private keys. The solution is given by the equation
mentioned above:

k = gab mod p = (ga mod p)b mod p = (gb mod p)a mod p

Based on that following procedure is implemented:

User A generates a public key:

kpub,A := ga mod p

The User A sends g, p and kpub,A to user B. User B now has enough information to
generate the actual symmetric encryption/decryption key:

k = (ga mod p)b mod p = (kpub,A)b mod p

User B also generates a public key:

kpub,B := gb mod p

Now user B sends back his public key kpub,B and so enables user A to also calculate
the actual symmetric encryption/decryption key:

k = (gb mod p)a mod p = (kpub,B)a mod p

Done! Now encrypted messages can be exchanged between user A and user B.

It depends on the prime p how many possible values the encryption key can have,
as the range of the key values is [2, p− 1]:

k = gab mod p ∈ [2, p− 1]

An example for a prime p is following 1024 bit length value (RFC 2539):

p = 21024 − 2960 − 1 + 264 ∗ ((2894 ∗ pi) + 129093)

This results in a 309 digit length decimal number:

179769313486231590770839156793787453197860296048756011706444
423684197180216158519368947833795864925541502180565485980503
646440548199239100050792877003355816639229553136239076508735
759914822574862575007425302077447712589550957937778424442426
617334727629299387668709205606050270810842907692932019128194
467627007

4

Now we should have a look at an example. Imagine we would define following
domain parameters p and g and the 2 private keys a and b:

p 23

g 5

a 6

b 15

User A (server, agent) would compute following public key:

kpub,A := 56 mod 23 = 15625 mod 23 = 8

User B (client), after receiving kpub,A, would compute the secret key:

k = 815 mod 23 = 35184372088832 mod 23 = 2

User B would also compute his public key:

kpub,B := 515 mod 23 = 30517578125 mod 23 = 19

User A, after receiving user B’s public key, would compute the secret key:

k = 196 mod 23 = 47045881 mod 23 = 2

So if an attacker tries to get the private key from user A’s published unencrypted
information g, p and kpub,A, he has to solve following problem: The private key of
user A is the logarithm to the base value g = 5 resulting in anything that has a rest
of kpub,A = 8 when dividing by p = 23. So possible values for y = gx are

yi = i · 23 + 8 with i ∈ {0, 1, 2, ...}

That means the attacker has to test 8, 31, 54, 77, ..., and so on. Getting the
logarithm to a base other then the e (ln) is possible by following equation:

x = logg(y) = ln(y)
ln(g)

So here the possible endless many keys:

log5(8) 1.29

log5(31) 2.13

log5(77) 2.69

... ...

log5(15625) 6

... ...

For every value the attacker needs to build the secret key by help of the server’s pub-
lic key and he needs an encrypted probe of the communication to test if decryption
using that secret key results in something meaningful.

5

3 ECDH: Using an Elliptic Curve

Instead using the discrete exponential function y = gx mod p, it is more secure to
use an elliptic curve (first proposed in 1986 by V. Miller and independently also
by N. Koblitz), which can be described by the Weierstrass equation in normal
form:

y2 = x3 + cx + d

with c, d ∈ N+

Figure 2: Exponential Function and Elliptic Curve

The Group Law for the elliptic curve says, that if ~P and ~Q are 2 points on the
curve, then following operation ⊕ (point addition) is defined:

Figure 3: The Elliptic Curve Point Addition

~R := ~P ⊕ ~Q

That means a third point ~R on the curve is defined by this operation. It can be
found by the intersection of the curve with the line through ~P and ~Q (which actually

is −~R).

6

In case ~P = ~Q we will get to point doubling:

Figure 4: The Elliptic Curve Point Doubling

~R = ~P ⊕ ~P := 2~P

If the slope sP of the crossing line (point addition) or tangent (point doubling) ~P
moves to infinity (turns vertical), we would run into a singularity, meaning into a
point where the operation is not defined. To get out of this, we define the point at
infinity:

lim
sP→∞

~R := ~P∞

Then we define for point addition and point doubling the operation at that point at
infinity such, that the point is neutral to the operation. To make all points on
the curve being an abelian group (German: Abelsche Gruppe) concerning the ⊕
operation (meaning the operation is commutative), we define commutativity at the
same moment:

~Q = −~P : ~P ⊕−~P := −~P ⊕ ~P := ~P∞ (1)

~Q = ~P : ~P ⊕ ~P := ~P∞ (2)

Figure 5: Point at Infinity

7

To get to the 3 times point addition we simply repeat the operation:

Figure 6: The Elliptic Curve 3 Times Point Addition

~R = 3~P = ~P ⊕ ~P ⊕ ~P

In general the definition of n times point addition is as follows:

~R = n~P := ~P ⊕ ~P ⊕ ...⊕ ~P︸ ︷︷ ︸
n

This enables us to fully geometrically describe the ⊕ operation on the elliptic curve.
To add a point to itself n times we perform one time point doubling and (n -
2) times point addition:

~R2 = 2~P = ~P ⊕ ~P

~R3 = 3~P = ~R2 ⊕ ~P

...

~Rn = n~P = ~Rn−1 ⊕ ~P

To compute this operation we first determine the slope of the straight line. We
have 2 different cases here: First we have point doubling, where the straight is
the tangent of the elliptic curve and so the slope the first derivation of the curve.
This is always our starting operation. Then we have a series of point additions,
where the straight line scrosses both points.

8

For the starting operation (point doubling) we get the slope from the first deriva-
tion of the curve:

s = dy
dx

= d
dx

(x3 + cx + d)
1
2

→ s = 1
2
· (x3 + cx + d)

−1
2 · (3x2 + c) = 3x2+c

2·
√
x3+cx+d

= 3x2+c
2·y(x)

→ sP =
3x2P +c

2·yP

For point addition we get the slope from the 2 intersection points ~P and ~Q:

sP = ∆y
∆x

=
yQ−yP
xQ−xP

With that results and the base point ~P = (xP , yP) we get following y value for the
straight line:

−y = sP · (x− xP) + yP

y = sP (xP − x)− yP (3)

with sP =

{
3x2P +c

2·yP
, if ~P = ~Q

yQ−yP
xQ−xP

, if ~P 6= ~Q
(4)

Now we bring that equation into normal form:

y = (−sP)x + (sPxP − yP)

→ y2 = (s2
P)x2 + (2sP (yP − sPxP))x + (yP − sPxP)2

y2 = (s2
P)x2 + (2sP (yP − sPxP))x + (yP − sPxP)2 (5)

At the intersection points the result is equal to the result of the Weierstrass equation
of the elliptic curve:

y2 = x3 + cx + d (6)

9

So subtracting equation (5) from equation (6) must result in 0 at the points of
intersection of the straight line and the elliptic curve:

(5) - (6) = 0

x3 + (−s2
P)x2 + (c− 2sP (yP − sPxP))x + (d− (yP − sPxP)2) = 0 (7)

This is a cubic equation

x3 + a2x
2 + a1x + a0 = 0 (8)

with the coefficients:

a2 = −s2
P

a1 = c− 2sP (yP − sPxP)

a0 = d− (yP − sPxP)2

It can be solved (first published by Cardano in 1545) by following substitution:

x := z − a2

3
(9)

→ z3 + pz + q

with the coefficients:

p =
3a1−a22

3

q =
2a32
27
− a2a1

3
+ a0

Cardano found, that the discriminant D determines of which type the 3 results of
that equation are:

D := q
2

2 + p
3

3

D > 0 1 real and 2 complex conjugate results

D = 0 3 real results, min. 2 are equal (for p = q = 0 all are equal)

D < 0 3 different real results

10

The solutions for D > 0 (1 real and 2 complex conjugate results):

u := 3

√
−q
2

+
√
D

v := 3

√
−q
2
−
√
D = p

3u

z1 = u + v

z2 = −u+v
2

+ j
√

3u−v
2

z3 = −u+v
2
− j
√

3u−v
2

The solutions for D = 0 (3 real results, min. 2 are equal):

If p = q = 0 then z1 = z2 = z3 = −a2
3

else z1 = 3
√
−4q and z2 = z3 = 3

√
q
2

The solutions for D < 0 (3 different real results):

zi = 2
√
−p
3

cos(ϕ
3

+ i · 2π
3

) with i ∈ {1, 2, 3}

ϕ = arccos −q
2
√
−(p

3
)3

In every case we have to regard the substitution by equation (9), and so the final
results for xi are those:

xi = zi − a2
3

with i ∈ {1, 2, 3}

Remembering where we started, we have following situation. For the starting opera-
tion, point doubling, D must be zero, as our straight line is crossing the elliptic
curve in point ~R and it is at the same time a tangent to the elliptic curve in point ~P .
So the intersection point ~Q moved into ~P (~Q = ~P), which is reflected by the 2 equal
real solutions x2 and x3. For the follow up point additions D must be negative
as we have 3 different real solutions. In general we can say that the solutions are:

x1 = xR

x2 = xQ

x3 = xP

11

This calculation can easily be done numerically, but it is not handy. To find a much
better solution to the problem, we have to look into our mathematical trick box.
If we look carefully at equation (8) we may remember that Franciscus Vieta (alias
Francois Viete) in the 16th century found following equation, so-called Vieta’s root
theorem (German: Vietascher Wurzelsatz):

If the solutions to following equation

xn + an−1x
n−1 + an−2x

n−2 + ... + a1x + a0

are x1, x2, ..., xn, then following is true:

n∑
i=1

xi = −an−1

Applied to our cubic equation

x3 + a2x
2 + a1x + a0 = 0

that means following:

x1 + x2 + x3 = −a2

As we found for solutions x1, x2 and x3 the values xR, xQ and xP , we will get
following result

xR + xQ + xP = s2
p

which leads us to a straight forward solution for xR:

xR =

{
xR = s2

p − 2xP , if ~P = ~Q (point doubling)

xR = s2
p − xQ − xP , if ~P 6= ~Q (point addition)

(10)

with sP =

{
3x2P +c

2·yP
, if ~P = ~Q (point doubling)

yQ−yP
xQ−xP

, if ~P 6= ~Q (point addition)
(11)

yR = sP (xP − xR)− yP (12)

12

Having a closer look at that result, which is valid for real numbers R, shows that
starting with a rational point ~P = (xP , yP) with xP , yP ∈ Q, would result in
following: The slope sP would be rational as well, and so would be xR and yR. That
means that the operation is fully valid for the subgroup of rational numbers Q
and so the rational points on the curve E build an abelian group E(Q).

If we start at an integer point ~P with (xP , yP) ∈ (Z), then point doubling would
result again in an integer point if following is true:

3x2
P + c = n(2 · yP) with n ∈ N+ (13)

The following repetitive point additions of ~P would again result in integer points
if following is true:

yQ − yP = n(xQ − xP) with n ∈ N+ (14)

So if (13) and (14) are fulfilled we have a discrete abelian group E(Z) for our
operation.

It is possible to choose the elliptic curve and the starting point (generator ~G) the
way that equation (13) and (14) are fulfilled. An example is the curve with c = 0
and d = 1:

y2 = x3 + 1

The x component of the generator point is at xG = 2 and so y2
G = 8 + 1 results in

yG = ±3, and the choice will be yG := −3. This would produce following results
(for the last result please refer to equation (1):

~P1 = ~G = (2,−3)
~P2 = 2 ~P1 = (0,−1)
~P3 = 3 ~P1 = ~P2 + ~G = (−1, 0)
~P4 = 4 ~P1 = ~P3 + ~G = (0, 1)
~P5 = 5 ~P1 = ~P4 + ~G = (2, 3)
~P6 = 6 ~P1 = ~P5 + ~G = (2, 3) + (2,−3) = ~P∞

So the order q of our generator ~G is q = 6.

With the discrete points on such a curve E(Z) and and such a generator ~G a cyclic
discrete abelian group can be build easily by defining:

~P∞ := ~G (15)

13

For practical use we want just positive integer numbers and a limited field size
n (Fn) and thus a new order q’ for our curve. We then define that the cycle starts
already when n is overstepped:

~R :=

{
~G, if xR − |x0| > n or yR − |y0| > n
~R, else

(16)

x′R = xR + |x0| (17)

y′R = yR + |y0| (18)

Whenever the n is overstepped by any coordinate, the algorithm steps back to ~G
again. To get back to normal coordinates:

xR = x′R − |x0| (19)

yR = y′R − |y0| (20)

With the values of the above example and a field size of n := 6, we are going to
have q’ = 5 integer points in a cycle:

Figure 7: ECDH with Finite Field

14

This cycle now has the same effect as the mod p operation with the expo-
nential function: the more often we apply the operation, the more often we will
see the same values, which makes the operation irreversible.
So now, that we know how to compute our stuff, we look at the key agreement
using an elliptic curve. For that first of all we define our domain parameters.
That is an elliptic curve (coefficients c and d) and a base point on the curve

(~G), so that we get a high order q. Using a finite field Fn with an appropriate

field size n we define a discrete cyclic abelian group by getting back to ~G in
the moment the operation oversteps the field limits. The new order by that is q’.

Now we can defines the random numbers a and b as private keys for user A and user
B. Those are used to build the secret key ~K by point addition:

~K := ab ~G

The public keys are build by both users like this:

User A: ~Kpub,A := a~G

User B: ~Kpub,B := b ~G

After exchanging their public keys, both users will be able to build the secret key:

~K = (xK , yK) = ab ~G = a ~Kpub,B = b ~Kpub,A

Finally x′K is used as secret encryption/decryption key by both users:

k := x′K = xK + |x0|

15

Using the above curve as example with ~G = (2,−3), a = 7 and b = 13

this would result in:

~Kpub,A = 7~G = (0,−1)

~Kpub,B = 13~G = (−1, 0)

~K = a ~Kpub,B = (−1, 0)⊕ 7~G = (2, 3)

~K = b ~Kpub,A = (0,−1)⊕ 13~G = (2, 3)

x′K = xK + |x0| = 2 + 1 = 3

16

Practically there are different implementations, for example from the National In-
stitute of Standards and Technology (NIST). NIST P-521 defines the filed size n as
prime p using a binary polynomial with 521 bits:

NIST P-521: n = p = 2521 − 1

Following decimal numbers are used in NIST P-521:

p = 17976931348623159077083915679378745319786029604875
60117064444236841971802161585193689478337958649255
41502180565485980503646440548199239100050792877003
35581663922955313623907650873575991482257486257500
74253020774477125895509579377784244424266173347276
29299387668709205606050270810842907692932019128194
467627007

c = 68647976601306097149819007990813932172694353001433
05409394463459185543183397656052122559640661454554
97729631139148085803712198799971664381257402829111
5057148

d = 10938490380737342745111123907668055699362075989516
83748994586394495953116150735016013708737573759623
24859213229670631330943845253159101291214232748847
8985984

xG = 26617408020502170632287687167233609607298591687569
73147706671368418802944996427808491545080627771902
35209424122506555866215711354557091681416163731589
5999846

yG = 37571800257700204635455072244911836035944551347697
62486694567779615544477440556316691234405012945539
56214444453728942852258566672919658081012434427757
8376784

q = 68647976601306097149819007990813932172694353001433
05409394463459185543183397655394245057746333217197
53296399637136332111386476861244038034037280889270
7005449

17

4 Comparing DH and ECDH

Traditionally the Diffie-Hellman Key Agreement Method (DH) publishes the base
value g and the prime p (number size). The Elliptic Curve Diffie-Hellman Key
Agreement Method (ECDH) publishes the elliptic curve by the coefficients c and

d, the base value ~G and the field size n.

Table 1: Comparing DH and ECDH
Name DH ECDH

Function/Curve Function y = gx Curve y2 = x3 + cx + d

Size prime p (different values) order q (different points)

Base Value g ∈ [2, p− 1] ~G with xG, yG ∈ [0, n]

Private keys a,b (random numbers) a,b (random numbers)

Public keys ga mod p, gb mod p a~G, b ~G (reduced to n x n)

Secret Key gab mod p ab ~G (x component)

ECDH is harder to crack, compared to traditional DH. The reason is that the
traditional DH uses an exponential function y = ga mod p, and guessing which
value a was reduced from ga to y by modp (discrete logarithm problem) is an easier
task then doing the same kind of thing for the point addition which is cycling on an
elliptic curve in a finite field (elliptic curve discrete logarithm problem).

18

5 DHE, ECDHE & PFS

To increase security, the principle of having a private key just for one message
was introduced (RFC 2631), so the lifetime of a private key is short (= the key is
ephemeral). To do so, the server (= sender) generates a new private key for each
message. With the traditional Diffie-Hellmann Key Agreement Method this is called
DHE. When using elliptic curves is is called ECDHE.

This much increases security, because without it the situation is as follows. If an
attacker records messages encrypted with a static private key and keeps them
stored until computing performance and algorithms become efficient enough, then
one day he might be able to find the private key and decrypt the recorded traffic. But
if the keys are ephemeral, meaning every message is encrypted with another private
key, the attacker would be able to see just one message. For all other messages he
would have to invest again the same effort for cracking the private key. To not be
able to decrypt all messages, if one message was cracked, is called Perfect Forward
Secrecy (PFS), and means that cracking one message has no consequences for the
security of the follow up messages (German: perfekt fortgesetzte Geheimhaltung).

Technically the server needs to offer appropriate cipher suites to the client. Us-
ing OpenSSL, the configuration tells the server (e.g. HTTPS server) by following
parameters that ephemeral private keys are an option, but a fallback to other
suites may be agreed, if requested by the client (web-browser) during the initial
handshake:

SSLCipherSuite ECDHE-RSA-AES128-SHA:DHE-RSA-AES128-SHA:AES128-SHA:RC4-SHA

This setup is compatible with most web-browsers. ECDHE stands for Elliptic Curve
Diffie-Hellmann Ephemeral (DHE for Diffie-Hellmann Ephemeral), RSA specifies the
authentication algorithm, AES128 the encryption algorithm and SHA the hashing
algorithm.

But if PFS and thus ephemeral privates keys is a must for the server, then a
setup like this is required:

SSLCipherSuite ECDHE-RSA-AES128-SHA:DHE-RSA-AES128-SHA

REMARK: Due to the overhead, server’s using ephemeral privates keys in-
crease the message delivering time. So compared to using static keys is is slower.
However, OpenSSL provides for example a 64 bit optimized version of NIST P-224,
which costs only about 15% overhead in time.

19

6 The Man In The Middle Attack

The above mentioned key exchange method still has a weak part: it is possible that
a hacker (user C) hooks into the traffic of user A and user B. When A initiates a
conversation, C fetches all messages and pretends to be B. Knowing the key exchange
method, C will send back kpub,C while spoofing the address of B, and A will think
that this is user B at the other end of the connection.

To overcome the man-in-the-middle attack, the mechanism of sending the fingerprint
of the public part of the RSA host key was introduced. That fingerprint is a short
representation of host’s public key, and can be used by a person to manually compare
it to a fingerprint that was written down before. So before the actual encrypted
connection (SSH, SCP or SFTP) is setup, the user is presented the fingerprint of
the host of the other user. Now, by checking his notes, he can manually verify the
correctness of that fingerprint. Of course any kind of manual transmission of the
authentic fingerprint is required before, possibly by a phone call to the other user.
Verifying the fingerprint is a fairly safe method to find out if the other side is really
the host we want to contact. But is is not always possible, as it requires to get in
contact with the other side. And of course the other side can be a host (e.g. a file
server), which runs in a server room and the administrator might not be reachable
for normal users.

Using OpenSSL, a machine’s RSA fingerprint can be determined like this:

$ ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key.pub
2048 c3:f6:2a:01:cd:39:61:7f:df:53:57:3e:d8:e4:99:36 /etc/...st_rsa_key.pub

20

