Public Key Certificates using a Merkle Tree
Summary of an Idea
peter-thoemmes.org research

© Peter Thoemmes

Weinbergstrasse 3a
D-54441 Ockfen, Germany

December 9, 2011

Abstract

This paper is a summary of the idea having public key certificates us-
ing a Merkle Tree. Ralph C. Merkle invented the Merkle Puzzles in 1974
as basic idea to the later (1976) developed Diffe-Hellmann Key Agreement
Method (Ralph C. Merkle, Whitfield Diffe and Martin E. Hellman). Later
in 1979 Merkle invented the Merkle Trees, and this is a summary about how
to use a Merkle Tree to create and verify public key certificates. This pa-
per is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY, without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.

Contents
1 Building a Merkle Tree for 2™ Certificates
2 Creating a Public Key Certificate

3 Validating a Public Key Certificate

1 Building a Merkle Tree for 2™ Certificates

Having a look at Figure 1, you see a Merkle Tree having 8 leaves. You see that the
number of leaves is always a power of 2. If you count the number of levels n under
the tree’s root, which is 3 in our tree, then you will find following equation:

N = 2" with n € Nt

N: Number of leaves of the tree.
n: Number of tree levels under the tree’s root.

Figure 1: Merkle Tree for N = 8

So now we generate N asymmetric key pairs and assign those to the tree’s leaves by
hashing each pair’s public key part concatenated (||) with the owner’s name (FQDN;,
Fully Qualified Domain Name):

Level 0 (leaves):

namey : privy, puby — a(0,0) := hash(pub||namey)
namey : privy, puby — a(0,1) := hash(pub; ||name;)

namer : prive, pub; — a(0,7) := hash(pubs||namer)

Then we create the next levels of nodes. By concatenating the values of the 2 nodes
underneath and then hashing them, we get each node’s value:

a(1,0) := hash(a(0,0)||a(0, 1))

a(1,1) := hash(a(0,2)||a(0, 3))

a(1,2) := hash(a(0,4)||a(0,5))

a(1,3) := hash(a(0,6)||a(0,7))
Level 2

Level 3 (root):

a(3,0) := hash(a(2,0)||a(2,1))

2 Creating a Public Key Certificate

To sign a certificate, consisting of a public key and a name (FQDN), both belonging
to one leave of a Merkle Tree, we define two things first: the Merkle Tree’s overall
public key pub and the path to the hash of our the certificate (which is the hash
over the concatenation of our public key and our name). Please see Figure 2, which
shows the path for signing the certificate made of pub, and names,:

Figure 2: Path to puby and names in the Merkle Tree
pub

hash(pub, [[name-)

Due to the symmetry, each node along the path has a brother. Merkle’s authenti-
cation makes use of those brothers, as you see when looking at authg s, auth, o and
authsy; in Figure 3.

Figure 3: Merkle Tree Authentication

pub

hash(pub, [[name,)

So there will always be n brothers along a path of a Merkle Tree and those will be
used to sign our certificate by simply concatenating them to the owner’s public key
and name as shown here for our example:

certy = pubs||names||authg s||authy o||auths

3 Validating a Public Key Certificate

To validate a certificate consisting of a public key, a name (FQDN) and a Merkle
authentication, the overall public key pub of the related Merkle Tree needs to be
deployed safely to the receiver first. This is somehow equal to the installation
of a root CA’s public signature decryption key, when talking about SSL public key
certificates in an SSL, PKI (Public Key Infrastructure). Without having this starting
point safely deployed once, things don’t work here. The important thing with pub
is, that it needs to be authentic. It is not important to hide it, but it is important
to make it resistant against manipulation. So if a receiver, owning the valid overall
public key pub of the Merkle Tree, receives a public key certificate, he validates it
by calculating the value of pub from that certificate. If this calculation is equal to
the installed pub, the certificate is valid, and so the public key inside can be seen
as belonging to the name (FQDN) inside:

certy = pubs||names||authg s||authy o||auths

a(2,0) = hash(pubs||name,)

a(1,1) = hash(a(0,2)||authg 3)
a(2,0) = hash(a(1,1)||auth o)
a(3,0) = hash(a(2,0)||authsy)

a(3,0) < pub — VALID — pub, and name, are valid and belong together!

